ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
August 2025
Nuclear Technology
Fusion Science and Technology
July 2025
Latest News
DOE on track to deliver high-burnup SNF to Idaho by 2027
The Department of Energy said it anticipated delivering a research cask of high-burnup spent nuclear fuel from Dominion Energy’s North Anna nuclear power plant in Virginia to Idaho National Laboratory by fall 2027. The planned shipment is part of the High Burnup Dry Storage Research Project being conducted by the DOE with the Electric Power Research Institute.
As preparations continue, the DOE said it is working closely with federal agencies as well as tribal and state governments along potential transportation routes to ensure safety, transparency, and readiness every step of the way.
Watch the DOE’s latest video outlining the project here.
Sagara Akio, Yamanishi Hirokuni, Uda Tatsuhiko, Motojima Osamu, Kunugi Tomoaki, Matsumoto Youji, Wu Yican, Matsui Hideki, Takahasi Shintaro, Yamamoto Takuya, Toda Saburo, Mitarai Osamu, Satake Shin-Ichi, Terai Takayuki, Tanaka Satoru, Fukada Satoshi, Nishikawa Masabumi, Shimizu Akihiko, Yoshida Naoaki
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 753-757
Chamber Technology | doi.org/10.13182/FST01-A11963329
Articles are hosted by Taylor and Francis Online.
The self-cooling molten-salt Flibe blanket of FFHR is numerically analyzed, resulting the optimum first wall to be as thin as 5mm and the heat flux up to 0.25MW/m2 to be feasible with adopting V-4Cr-4Ti as the structural material. An alternative concept of free surface using a capillary force is shown to be feasible even in helical systems, where a spiral flow is formed and drastically enhances the heat transfer efficiency. The nuclear property of Flibe blanket is modified with increasing Be amount and adopting carbon reflector, resulting the local TBR of 1.3. As an optional technique, 50% enrichment of Li-6 gives the maximum TBR of 1.4.