ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Justin A. Collins, Minami Yoda, Said I. Abdel-Khalik
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 721-725
Chamber Technology | doi.org/10.13182/FST01-A11963324
Articles are hosted by Taylor and Francis Online.
The High-Yield Lithium-Injection Fusion Energy (HYLIFE)-II conceptual reactor design uses stationary and oscillating slab jets, or liquid sheets, of molten Flibe (Li2BeF4) to shield the chamber first walls from damaging neutrons, ions, and target debris. A lattice of stationary liquid sheets with the beams propagating through the lattice openings is used to protect chamber front and back walls. Extremely smooth sheets are required to effectively shield the chamber first walls without clipping the driver beams. Surface ripple and its growth are therefore a major concern in liquid protection design.
In this study, a non-intrusive technique for directly visualizing and measuring the instantaneous free-surface geometry has been developed. Mean free-surface geometry and surface geometry fluctuation results for turbulent water sheets issuing vertically downwards into atmospheric pressure air are presented at Reynolds numbers based upon the nozzle thickness of 34000, at distances up to 25 nozzle thicknesses (25δ) downstream of the nozzle exit.