ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
P.F. Peterson
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 702-710
Chamber Technology | doi.org/10.13182/FST01-A11963321
Articles are hosted by Taylor and Francis Online.
High-temperature, low-vapor-pressure liquid jets can provide neutron shielding for inertial fusion energy (IFE) target chambers. To minimize pumping power, free liquid jets must be located close to the target to reduce the total liquid volume required for shielding each fusion shot. For heavy ion drivers compact liquid geometry provides additional benefits by reducing focus-magnet stand off distance. The disruption of the liquid by targets involves complex fluid mechanics, as does the subsequent droplet clearing and pocket regeneration. The ranges of time, length, and energy-density scales in IFE target chambers are extreme compared to most engineered systems. Scaling, discussed in detail here, can identify optimal approaches to study and model liquid response, and minimize experimental distortion. More broadly, the systematic categorization of IFE phenomena by duration and location is shown to provide a natural format for selecting experiments to study IFE phenomena ranging from beam transport to chamber activation.