ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
Sandy Quan, Neil B. Morley, Mohamed A. Abdou
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 697-701
Chamber Technology | doi.org/10.13182/FST01-A11963320
Articles are hosted by Taylor and Francis Online.
One definition for the “damage limit” of a liquid metal surface used as a final optic for laser fusion power plants is the maximum energy flux that the liquid metal can withstand without any resulting spallation. Some preliminary calculations were performed by Moir to roughly estimate the damage limit by imposing the restriction of a 200°C surface temperature rise. Here, new 1D calculations that account for hydro-motion on the compressible time scales are presented, along with revised estimates of the damage limits for liquid aluminum, sodium, and mercury. Slow compression time scales (~20 ns) produced negative pressures in the liquid film on the order of MPa, and fast ignition time scales (~10 ps) yielded GPa pressures for the laser energy densities set out by Moir. For Na and Al the peak energy densities normal to the beam on the order of 5 to 10 J/cm2 were acceptable for fast ignition when 85° grazing incidence is assumed. Some experimental data on the generation and damping of surface waves resulting from surface ablation recoil is also presented, where large waves are seen to damp out after about 50 ms following the laser pulse.