ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Sandy Quan, Neil B. Morley, Mohamed A. Abdou
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 697-701
Chamber Technology | doi.org/10.13182/FST01-A11963320
Articles are hosted by Taylor and Francis Online.
One definition for the “damage limit” of a liquid metal surface used as a final optic for laser fusion power plants is the maximum energy flux that the liquid metal can withstand without any resulting spallation. Some preliminary calculations were performed by Moir to roughly estimate the damage limit by imposing the restriction of a 200°C surface temperature rise. Here, new 1D calculations that account for hydro-motion on the compressible time scales are presented, along with revised estimates of the damage limits for liquid aluminum, sodium, and mercury. Slow compression time scales (~20 ns) produced negative pressures in the liquid film on the order of MPa, and fast ignition time scales (~10 ps) yielded GPa pressures for the laser energy densities set out by Moir. For Na and Al the peak energy densities normal to the beam on the order of 5 to 10 J/cm2 were acceptable for fast ignition when 85° grazing incidence is assumed. Some experimental data on the generation and damping of surface waves resulting from surface ablation recoil is also presented, where large waves are seen to damp out after about 50 ms following the laser pulse.