ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Takuya Nagasaka, Martin L. Grossbeck, Takeo Muroga, James F. King
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 664-668
Fusion Materials | doi.org/10.13182/FST01-A11963315
Articles are hosted by Taylor and Francis Online.
Charpy impact tests of Japanese and US reference V-4Cr-4Ti alloys, NIFS-HEAT-1 (180 wppm oxygen) and US832665 (310 wppm Oxygen), were examined after gas-tungsten-arc (GTA) welding in a purified argon atmosphere. To investigate the effects of further reduction of oxygen level in the fusion zone, filler wires made of HP (high-purity V-4Cr-4Ti, 36 wppm oxygen) were used as well as those made of the reference alloys. Charpy impact property of NIFS-HEAT-1 in as-GTA-welded condition was superior to that of US832665. Use of the high-purity filler wires improved the impact property further. Good correlation was obtained between ductile-brittle-transition temperature (DBTT) and the oxygen level in the fusion zone. Since oxygen contamination from the atmosphere is avoidable by controlling its impurity level, oxygen reduction in weld materials, such as plate and wire, is crucial to obtain good weldability. Only contamination element detected in this study was hydrogen. Contamination occurred not only in fusion zone but also in base metal. Degassing of hydrogen after the welding may improve the impact property further.