ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Takuya Nagasaka, Martin L. Grossbeck, Takeo Muroga, James F. King
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 664-668
Fusion Materials | doi.org/10.13182/FST01-A11963315
Articles are hosted by Taylor and Francis Online.
Charpy impact tests of Japanese and US reference V-4Cr-4Ti alloys, NIFS-HEAT-1 (180 wppm oxygen) and US832665 (310 wppm Oxygen), were examined after gas-tungsten-arc (GTA) welding in a purified argon atmosphere. To investigate the effects of further reduction of oxygen level in the fusion zone, filler wires made of HP (high-purity V-4Cr-4Ti, 36 wppm oxygen) were used as well as those made of the reference alloys. Charpy impact property of NIFS-HEAT-1 in as-GTA-welded condition was superior to that of US832665. Use of the high-purity filler wires improved the impact property further. Good correlation was obtained between ductile-brittle-transition temperature (DBTT) and the oxygen level in the fusion zone. Since oxygen contamination from the atmosphere is avoidable by controlling its impurity level, oxygen reduction in weld materials, such as plate and wire, is crucial to obtain good weldability. Only contamination element detected in this study was hydrogen. Contamination occurred not only in fusion zone but also in base metal. Degassing of hydrogen after the welding may improve the impact property further.