ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
Flamanville-3 reaches full power
France’s state-owned electric utility EDF has announced that Flamanville-3—the country’s first EPR—reached full nuclear thermal power for the first time, generating 1,669 megawatts of gross electrical power. This major milestone is significant in terms of both this project and France’s broader nuclear sector.
Kunihiko Tsuchiya, Hiroshi Kawamura
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 624-628
Fusion Materials | doi.org/10.13182/FST01-A11963307
Articles are hosted by Taylor and Francis Online.
Recently, lithium titanate (Li2TiO3) has attracted the attention of many researchers. As the shape of Li2TiO3, a small pebble was selected as the Japanese design of fusion blanket. On the other hand, as the fabrication method of Li2TiO3 pebbles, the wet process is most advantageous from viewpoints of mass production, etc. On the other hand, the improved materials such as TiO2-doped Li2TiO3 have been developed from viewpoints of microcrystal, moisture absorption properties and so on. In this study, the fabrication tests of TiO2-doped Li2TiO3 pebbles by wet process were performed and thermal properties of TiO2-doped Li2TiO3 pellets were evaluated.