ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Michael J. Morgan, Michael H. Tosten
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 590-595
Fusion Materials | doi.org/10.13182/FST01-A11963301
Articles are hosted by Taylor and Francis Online.
Crack initiation and propagation were studied in three tritium-exposed stainless steels. The purpose was to measure cracking thresholds and velocities as a function of helium concentration in Type 21-6-9 stainless steel and compare the results to earlier measurements on Types 316L and 304L steels. Fracture toughness specimens were cut from forgings, fatigue-cracked and exposed to tritium at 423 K and 31 MPa. The samples were aged for selected times at 273 K to “build-in” 3He from tritium decay. Tritium concentrations ranged from 0-2600 atomic parts-per-million (appm) and 3He concentrations ranged from 0-600 appm. The samples were step-loaded at room temperature in air using a screw-driven mechanical testing machine and held at fixed displacement until crack initiation was detected. Crack propagation was monitored by continuously recording the drop in load until crack arrest. Threshold stress intensity was calculated from the load and the crack length at the end of the test. Crack velocities were determined from the load-time records and compliance relationships and verified on some samples using a DC potential-drop technique. The crack path was along grain and twin boundaries. For 21-6-9, the threshold for cracking decreased with increasing helium concentrations from about 90 MPa-m1/2 (50 appm helium) to 25 MPa-m1/2 (600 appm helium). Steady-state-crack velocities averaged 10-7 m/s and was not strongly dependent on helium concentration. The data show that embrittlement of tritium-exposed stainless steels is a form of hydrogen embrittlement made worse by the hardening of the microstructure from nanometer-sized helium bubbles that build-in with tritium decay.