ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kusuma Dewi, Akira Hasegawa, Satoshi Otsuka, Katsunori Abe
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 585-589
Fusion Materials | doi.org/10.13182/FST01-A11963300
Articles are hosted by Taylor and Francis Online.
In ITER, austenitic stainless steels are under consideration as a blanket structural material for temperature below 200°C. Transmuted helium will be also produced in austenitic stainless steels by high-energy neutron irradiation, and it will affect microstructural development including grain boundary segregation. In this paper, the effects of helium on grain boundary segregation in austenitic stainless steels are studied using ion-irradiation experiment.
The result showed that the onset of radiation induced segregation (RIS) by proton irradiation occurs somewhere between 0.1 and 0.5 dpa. Helium pre-implantation significantly reduced RIS of the major alloying elements. Mechanisms are discussed. Comparison of this result with neutron irradiated induced segregation showed qualitative agreement in the data trends. However, a large amount of segregation was observed in the proton irradiated 304 austenitic stainless steels specimens.