ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Operations & Power
Members focus on the dissemination of knowledge and information in the area of power reactors with particular application to the production of electric power and process heat. The division sponsors meetings on the coverage of applied nuclear science and engineering as related to power plants, non-power reactors, and other nuclear facilities. It encourages and assists with the dissemination of knowledge pertinent to the safe and efficient operation of nuclear facilities through professional staff development, information exchange, and supporting the generation of viable solutions to current issues.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
J. M. Perlado, E. Domínguez, D. Lodi, L. Malerba, J. Marian, J. Prieto, M. Salvador, T. Díaz de la Rubia, E. Alonso, M. J. Caturla, L. Colombo
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 579-584
Fusion Materials | doi.org/10.13182/FST01-A11963299
Articles are hosted by Taylor and Francis Online.
The change in SiC properties under neutron irradiation is being experimentally assessed but it is actually far from being well understood. Using Molecular Dynamics (MDCASK-DENIM/LLNL), we show the existence of recombination barriers (metastable defects), and how they affect the cascade analysis. Displacement cascades have been systematically studied and the different role of both sublattices examined. Low-temperature amorphization by damage accumulation has been successfully simulated using MD in accordance with experiments, allowing the understanding (not possible from experiments) of the atomistic sequence of damage. We are also developing new methodologies (tight binding MD) to prove the adequacy of the interatomic potential to describe energetic of configurations needed for diffusion in SiC. The neutron source from target is obtained with time resolution, together with responses after transport in the IFE reactor. The comparison of different primary knock-on atom (PKA) energy spectra from different fusion reactors is given, which is a basic information for displacement cascade analysis. Those spectra are a direct consequence of the neutron spectra in the material (depending on protection). Supported by recent work on atomistic level, the effect of pulsed irradiation was concluded. The time between pulses has a key role in the annealing process of defects. The comparison with average continuous irradiation, and the different behaviour for vacancies and interstitials, are highlighted.