ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
K. Masuda, K. Taruya, T. Koyama, H. Hashimoto, K. Yoshikawa, H. Toku, Y. Yamamoto, M. Ohnishi, H. Horiike, N. Inoue
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 562-566
Nonelectric Applications | doi.org/10.13182/FST01-A11963296
Articles are hosted by Taylor and Francis Online.
Simultaneous measurements of neutrons and protons were carried out to identify D-D fusion reactions in an Inertial-Electrostatic Confinement Fusion (IECF) device, which is theoretically expected to produce D-D protons and neutrons in a dense plasma core at the center. Experimental results showed an excellent agreement of a measured proton energy with the predicted one, and a strong linear correlation between neutron and proton yields, both indicating conclusively D-D fusion reactions in the IECF device. It is also found, through comparison between neutron and collimated proton yields, that more than 98 % of the fusion reactions take place outside the central core region under the present experimental conditions.