ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
K. Masuda, K. Taruya, T. Koyama, H. Hashimoto, K. Yoshikawa, H. Toku, Y. Yamamoto, M. Ohnishi, H. Horiike, N. Inoue
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 562-566
Nonelectric Applications | doi.org/10.13182/FST01-A11963296
Articles are hosted by Taylor and Francis Online.
Simultaneous measurements of neutrons and protons were carried out to identify D-D fusion reactions in an Inertial-Electrostatic Confinement Fusion (IECF) device, which is theoretically expected to produce D-D protons and neutrons in a dense plasma core at the center. Experimental results showed an excellent agreement of a measured proton energy with the predicted one, and a strong linear correlation between neutron and proton yields, both indicating conclusively D-D fusion reactions in the IECF device. It is also found, through comparison between neutron and collimated proton yields, that more than 98 % of the fusion reactions take place outside the central core region under the present experimental conditions.