ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Judge temporarily blocks DOE’s move to slash university research funding
A group of universities led by the American Association of Universities (AAU) acted swiftly to oppose a policy action by the Department of Energy that would cut the funds it pays to universities for the indirect costs of research under DOE grants. The group filed suit Monday, April 14, challenging a what it termed a “flagrantly unlawful action” that could “devastate scientific research at America’s universities.”
By Wednesday, the U.S. District Court judge hearing the case issued a temporary restraining order effective nationwide, preventing the DOE from implementing the policy or terminating any existing grants.
Yoshiyuki Asaoka, Kunihiko Okano, Tomoaki Yoshida, Ryouji Hiwatari, Koji Tokimatsu
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 518-522
Fusion Economic Studies | doi.org/10.13182/FST01-A11963288
Articles are hosted by Taylor and Francis Online.
Maximum implementation capacity of commercial fusion reactors based on breeding and supply of tritium has been investigated. The implementation capacity of fusion power reactors depends upon the net tritium breeding gain and a requirement of the initial supply of tritium for a steady commercial operation. In the reference case, the maximum implementation capacity is 7 GWe in 10 years after the year of fusion introduction, 118 GWe in 20 years and 488 GWe in 25 years. It is mainly limited by the industrial construction capacity after 25 years. The maximum implementation capacity is largely depends on the preparation interval of operation as well as the tritium breeding performance. It means that subsequent reactors must start operation as soon as possible not to leave produced tritium. The requirement to the tritium breeding for a satisfactory implementation of fusion power plants is also discussed. In the case that fusion implementation is similar to the increase of fission reactors in last 40 years, tritium breeding ratio of 1.08 will be required for the early plants. On the other hand, tritium breeding ratio of 1.02 is sufficient when fusion plants are widely deployed.