ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. A. Mogahed, L. El-Guebaly, A. Abdou, P. Wilson, D. Henderson, ARIES Team
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 462-466
Advanced Designs | doi.org/10.13182/FST01-A11963279
Articles are hosted by Taylor and Francis Online.
Loss of coolant accident (LOCA) and loss of flow accident (LOFA) analysis is performed for ARIES-AT, an advanced fusion power plant design (1000 MWe). ARIES-AT employs a high performance, high temperature blanket system. It uses the high temperature SiC/SiC for structural material and LiPb for coolant-breeder. Due to the large difference between the time scale of plasma shutdown and the coolant or power loss, it is assumed that the plasma is immediately quenched at the onset of the LOCA/LOFA and the chamber components' temperature begins to rise due to the decay heat generated. A 2-D transient finite element model is established to examine the thermal behavior of the in-vessel components to determine the maximum temperature reached, the time, and duration of the peak. The model is axisymmetric in (r-z) around the reactor axis to show the details of temperature distribution in the vertical direction. The vacuum vessel is assumed adiabatic in the inboard side and radiates to the maintenance port located on the outboard side. The maximum temperature of steel in the reactor is about (600 °C - 700°C) after about 4 days from the onset of the accident. The highest temperature in the reactor is in the divertor region and it reaches ≈1050°C after about 2-3 hours. The analysis indicates that the reactor does not need any special scheme for decay heat removal.