ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
D. Henderson, L. El-Guebaly, P. Wilson, A. Abdou, ARIES Team
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 444-448
Advanced Designs | doi.org/10.13182/FST01-A11963276
Articles are hosted by Taylor and Francis Online.
Detailed activation, decay heat and waste disposal calculations of the ARIES-AT design are performed to evaluate the safety aspects of the device. The high initial activity of the SiC highly irradiated components translates directly into a higher initial decay heat for these structures than for the well-protected steel-based components. However, after a one-hour cool-down period, the SiC decay heat drops by two decades to levels comparable to the steel-based components. The decay heat of the LiPb coolant was found to exceed that of the SiC components for several days after shutdown. This implies that a loss of flow accident (LOFA) event is more critical than a loss of coolant accident (LOCA) event for LiPb/SiC systems. Regarding waste disposal, all structures can easily meet the Class C Low-Level Waste (LLW) requirements established for the ARIES power plants. Many components could qualify as Class A LLW after a 100-year storage period after selection of low activation materials and control of the Nb and Mo impurities in ferritic steel. A purification system will be required to remove the 210Po and 203Hg generated by Pb during operation.