ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
D. Henderson, L. El-Guebaly, P. Wilson, A. Abdou, ARIES Team
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 444-448
Advanced Designs | doi.org/10.13182/FST01-A11963276
Articles are hosted by Taylor and Francis Online.
Detailed activation, decay heat and waste disposal calculations of the ARIES-AT design are performed to evaluate the safety aspects of the device. The high initial activity of the SiC highly irradiated components translates directly into a higher initial decay heat for these structures than for the well-protected steel-based components. However, after a one-hour cool-down period, the SiC decay heat drops by two decades to levels comparable to the steel-based components. The decay heat of the LiPb coolant was found to exceed that of the SiC components for several days after shutdown. This implies that a loss of flow accident (LOFA) event is more critical than a loss of coolant accident (LOCA) event for LiPb/SiC systems. Regarding waste disposal, all structures can easily meet the Class C Low-Level Waste (LLW) requirements established for the ARIES power plants. Many components could qualify as Class A LLW after a 100-year storage period after selection of low activation materials and control of the Nb and Mo impurities in ferritic steel. A purification system will be required to remove the 210Po and 203Hg generated by Pb during operation.