ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
December 2025
Nuclear Technology
November 2025
Fusion Science and Technology
Latest News
New Mexico Nuclear Alliance begins its advocacy work
The New Mexico Nuclear Alliance made its official debut as a nuclear energy advocate in late October, when founder Scott Lopez spoke with state lawmakers during a meeting of the New Mexico legislature’s Science, Technology and Telecommunications Committee, held at New Mexico State University in Las Cruces.
David A. Dilling, Tom Brown
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 417-421
Advanced Designs | doi.org/10.13182/FST01-A11963271
Articles are hosted by Taylor and Francis Online.
This paper describes the buildings and balance of plant systems required to support the Fusion Ignition Research Experiment (FIRE) Project. Facilities and systems are developed on the basis of a “greenfield” site, with no benefit for existing facilities, but also without any constraints on the potential arrangement. Because FIRE will operate deuterium-tritium plasmas for pulse lengths on the order of 20 seconds, FIRE will require a moderate on-site tritium inventory. FIRE buildings and systems must be designed and licensed to comply with regulations for nuclear facilities. They must also include systems to manage tritium and tritiated water, activated dust, and radioactive waste material. Maintenance activities on FIRE will require the use of remote handling systems to remove and transport tokamak parts to hot cell facilities. Major tokamak service connections will be required to feed power to the copper magnet system and deliver plasma-heating energy to ICRF antennae. Competition for access to the tokamak for service connections and repair activities will constrain the overall arrangement and routing of services.
This paper examines the design implications for the fuel supply, vacuum pumping, fuel recovery, cooling, and other balance of plant systems that contribute to the control of radioactive materials. It also examines the design implications for the tokamak test cell, hot cells, structures to house key services, and routing of service connections to the tokamak. Site requirements, a generic site plan, and conceptual building arrangements are provided.