ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Nermin A. Uckan, John C. Wesley
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 398-402
Advanced Designs | doi.org/10.13182/FST01-A11963267
Articles are hosted by Taylor and Francis Online.
The physics design guidelines for a next step, high-field tokamak, burning plasma experiment (FIRE, Fusion Ignition Research Experiment) have been developed as an update of the ITER Physics Basis (IPB). The plasma performance attainable in FIRE (or any next-step device) is affected by many physics issues, including energy confinement, L-to-H-mode power transition thresholds, MHD stability/beta limit, density limit, helium accumulation/removal, impurity content, sawtooth effects, etc. Design basis and guidelines are provided in each of these areas, along with sensitivities and/or uncertainties involved. The overall basic device parameters and features for FIRE (R = 2 m, a = 0.525 m, κ95 ~ 1.8, δ95 ~ 0.4, q95 > 3, B = 10-12 T, I = 6.45-7.7 MA, Pfus ~ 100-200 MW, Q ~ 5-10) are consistent with these guidelines and uncertainties if the potential design upgrade option (12 T, 8 MA) is considered as part of the main design option.