ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
Nuclear Energy Conference & Expo (NECX)
September 8–11, 2025
Atlanta, GA|Atlanta Marriott Marquis
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jul 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
August 2025
Fusion Science and Technology
Latest News
Inkjet droplets of radioactive material enable quick, precise testing at NIST
Researchers at the National Institute of Standards and Technology have developed a technique called cryogenic decay energy spectrometry capable of detecting single radioactive decay events from tiny material samples and simultaneously identifying the atoms involved. In time, the technology could replace characterization tasks that have taken months and could support rapid, accurate radiopharmaceutical development and used nuclear fuel recycling, according to an article published on July 8 by NIST.
Dale M. Meade
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 336-342
Fusion Technology Plenary | doi.org/10.13182/FST01-A11963257
Articles are hosted by Taylor and Francis Online.
Experiments are needed to test and extend present understanding of confinement, macroscopic stability, alpha-driven instabilities, and particle/power exhaust in plasmas dominated by alpha heating. A design study of a Fusion Ignition Research Experiment (FIRE) is underway to assess near term opportunities for producing and studying fusion dominated plasmas in the laboratory. The emphasis is on understanding the behavior of fusion plasmas dominated by alpha heating (Q ≥ 5) that are sustained for a duration comparable to the characteristic plasma time scales (≥ 20 τE and ~ 1.5 τskin, where τskin is the time for the plasma current profile to redistribute at fixed current). These requirements can be satisfied with BeCu/OFHC toroidal field coils and OFHC poloidal coils that are pre-cooled to 77 °K prior to the pulse. The plasma facing components will have tungsten divertor plates and Be first wall tiles. No graphite is allowed inside the vacuum vessel due to tritium retention issues. The mission of FIRE is to attain, explore, understand and optimize alpha-dominated plasmas to provide knowledge for the design of attractive magnetic fusion energy systems. The programmatic strategy is to access the alpha-heating-dominated regime with confidence using the present advanced tokamak data base (e.g., Elmy-H-mode, ≤ 0.75 Greenwald density) while maintaining the flexibility for accessing and exploring other advanced tokamak modes (e. g., reversed shear, pellet enhanced performance) at lower magnetic fields and fusion power for longer durations in later stages of the experimental program. A major constraint is to develop a design concept that could meet these physics objectives with a construction cost in the range of $1B.