ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
P.I. Petersen, DIII-D Team
Fusion Science and Technology | Volume 39 | Number 2 | March 2001 | Pages 305-314
Fusion Technology Plenary | doi.org/10.13182/FST01-A11963253
Articles are hosted by Taylor and Francis Online.
An advanced tokamak is characterized by increased confinement, stability and steady state operation. The increased confinement and stability are obtained through modifications to the shape and profiles of the plasma and through stability feedback control. These modifications have to be self-consistent. The increased confinement makes it possible to make smaller and thereby lower cost reactors for the same power output as compared to conventional tokamaks. Four potential modes for advanced tokamaks are currently being studied on DIII-D: radiative improved mode, high internal inductance ℓi mode, negative central shear (NCS) mode, and quiescent double barrier (QDB) mode.
High-density plasma are important for reactors and recent experiments in DIII–D have shown that it is possible to operate substantially above the Greenwald limit. Control of the internal transport barriers that are responsible for the increased confinement have been improved in counter injected neutral beam plasmas. One of the limiting instabilities for the performance of high bootstrap fraction negative central shear plasmas is the resistive wall mode. These modes have to a certain degree been suppressed in DIII–D by using the six-section correction coil. With a newly installed upper inner divertor in DIII–D it has been possible to obtain improved density and impurity control. An upgrade of the electron cyclotron system is being done on DIII–D. Three 1 MW gyrotrons are being added. This system has been used to completely suppress the neoclassical tearing mode by applying electron cyclotron current drive at definite positions and in very localized areas. Finally, the implication of the recent findings for fusion reactors will be discussed.