ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
T. Numakura, T. Cho, J. Kohagura, M. Hirata, R. Minami, Y. Nakashima, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 277-280
Poster Presentations | doi.org/10.13182/FST01-A11963460
Articles are hosted by Taylor and Francis Online.
A new method is proposed for obtaining radial profiles of both plasma ion (Ti) and electron temperatures (Te) simultaneously using one semiconductor detector array alone. Furthermore, availability of the new idea of the simultaneous Ti and Te diagnostics is experimentally demonstrated by the use of a small-sized semiconductor detector array. This novel method for semiconductor Ti diagnostics is proposed on the basis of an alternative “positive” use of a semiconductor “dead layer” as an energy-analysis filter. Filtering dependence of charge-exchange neutral particles from plasmas on the thickness on the order of nm thick SiO2 layer is used for analyzing Ti ranging from hundreds to thousands eV. In this report, proof-of-principle plasma experiments for the proposed idea are, at first, demonstrated in the GAMMA 10 tandem mirror to verify the availability of this novel idea of distinguishing and identifying each value of Ti and Te by the use of various thin filtering materials. Furthermore, novel experimental data on radial profiles of Ti and Te are simultaneously observed and analyzed using a semiconductor detector array along with the development of a Monte-Carlo computer simulation code for analyzing interactions between semiconductor materials and incident particles. The radial profiles of Ti and Te obtained from semiconductor detectors by the use of the proposed method are found to be in good agreement with those from a charge-exchange neutral-particle Ti analyzer and a microchannel-plate Te detector. Detailed data and analysis method are represented in the paper.