ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
A.A. Ivanov, A.V. Anikeev, P.A. Bagryansky, A.N. Karpushov, V.N. Komilov, V.V. Maximov, K. Noack
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 213-216
Poster Presentations | doi.org/10.13182/FST01-A11963444
Articles are hosted by Taylor and Francis Online.
Experiments with 3 MW D0 injection have been carried out in the Gas Dynamic Trap (GDT) to simulate the axial profile of the fusion reaction intensity in the projecting neutron source based on the GDT1. Quite narrow angular distribution function of the fast ions produced by an oblique neutral beam injection results in a peaked axial profile of the fusion yield. This strong peaking is essential to produce intense neutron flux in the testing zones of the GDT–based neutron source.
The scintillation counters were installed in the central cell of the device to monitor the DD fusion reactions products: neutrons (2.45 MeV) and protons (3.02 MeV). Scintillation detectors were located closely to the plasma column inside of the vacuum vessel to avoid contribution from the scattered neutrons and to improve spatial resolution of the measurements. Longitudinal profiles of 2.45 MeV neutrons and 3.02 MeV protons have been measured in the high-beta regime of the GDT operation.
In the paper the experimental data are compared with the results of numerical simulations 2. The conclusion is drawn that the kinetics of the fast ion relaxation and scattering is determined by classical Coulomb collisions 3.