ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
A.A. Ivanov, A.V. Anikeev, P.A. Bagryansky, A.N. Karpushov, V.N. Komilov, V.V. Maximov, K. Noack
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 213-216
Poster Presentations | doi.org/10.13182/FST01-A11963444
Articles are hosted by Taylor and Francis Online.
Experiments with 3 MW D0 injection have been carried out in the Gas Dynamic Trap (GDT) to simulate the axial profile of the fusion reaction intensity in the projecting neutron source based on the GDT1. Quite narrow angular distribution function of the fast ions produced by an oblique neutral beam injection results in a peaked axial profile of the fusion yield. This strong peaking is essential to produce intense neutron flux in the testing zones of the GDT–based neutron source.
The scintillation counters were installed in the central cell of the device to monitor the DD fusion reactions products: neutrons (2.45 MeV) and protons (3.02 MeV). Scintillation detectors were located closely to the plasma column inside of the vacuum vessel to avoid contribution from the scattered neutrons and to improve spatial resolution of the measurements. Longitudinal profiles of 2.45 MeV neutrons and 3.02 MeV protons have been measured in the high-beta regime of the GDT operation.
In the paper the experimental data are compared with the results of numerical simulations 2. The conclusion is drawn that the kinetics of the fast ion relaxation and scattering is determined by classical Coulomb collisions 3.