ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Jan 2026
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Seong-Heon Seo, H. K. Na, M. Kwon, N. S. Yoon
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 163-166
Topical Lectures | doi.org/10.13182/FST01-A11963432
Articles are hosted by Taylor and Francis Online.
Doppler Broadening methods have been intensively used in measuring the temperature of neutral atoms and ions in plasma diagnostics. However, since only the line-integrated emission can be measured in the experiments, the local temperature can not be found directly. To solve this problem, we first measured the spatial distribution of each spectrum by Abel inversion and then obtained the Doppler broadening at each radial position by analytically combining the spectra. The emissions are collected through five optical fibers which are located at intervals of 48 mm and inserted into the slit of a spectrometer. The dispersed output from the spectrometer is measured with a CCD camera. Since the abscissa of a CCD frame represents the spectra and the ordinate represents the spatial distribution, the Abel-inverted Doppler broadening is easily measured. By using this method, we measured the temperature distribution of neutral atoms and ions in the Hanbit device.