ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
S. Lee, T. Kondoh, R. Yoshino, T. Cho, M. Hirata, Y. Miura
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 151-154
Topical Lectures | doi.org/10.13182/FST01-A11963429
Articles are hosted by Taylor and Francis Online.
An advanced diagnostic technique to measure the ion temperature and fast ions in open magnetic field systems is described. The method for the determination of deuterium to tritium ratio and the helium ash density in DT burning plasmas is also proposed. The measurement is made by small angle collective Thomson scattering (CTS) using a high power pulsed CO2 laser and heterodyne receiver system. The axial profiles can be measured by an axially injected beamline. Attenuation and refraction in the plasma are unimportant even for large devices. Scattered spectrum of the expected DT fusion plasma with currently developed laser and receiver system is presented. The component of scattered laser power nearly perpendicular to the magnetic field giving rise to ion cyclotron modulation of the scattered spectrum. Spectrum from pure deuterium and from D-T mixed plasma show the possibility of fuel ratio measurement. The scattered spectrum of D-T plasmas with thermalized helium ash is also calculated. Experimental arrangement to improve the S/N ratio in low density open magnetic systems are also discussed. The possibility of ion temperature and modulation measurement using a homodyne receiver system in GAMMA 10 are also evaluated.