ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Young Members Group
The Young Members Group works to encourage and enable all young professional members to be actively involved in the efforts and endeavors of the Society at all levels (Professional Divisions, ANS Governance, Local Sections, etc.) as they transition from the role of a student to the role of a professional. It sponsors non-technical workshops and meetings that provide professional development and networking opportunities for young professionals, collaborates with other Divisions and Groups in developing technical and non-technical content for topical and national meetings, encourages its members to participate in the activities of the Groups and Divisions that are closely related to their professional interests as well as in their local sections, introduces young members to the rules and governance structure of the Society, and nominates young professionals for awards and leadership opportunities available to members.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
V.E. Moiseenko
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 65-72
Invited Review Lectures | doi.org/10.13182/FST01-A11963416
Articles are hosted by Taylor and Francis Online.
The excitation of slow waves by the fast wave antenna could lead to the undesirable heating of plasma periphery and must be suppressed. The effects of slow wave excitation are analyzed using a one dimensional analytical model. The effect of conversion of fast wave to slow wave at the plasma edge is discussed. The efficiency of the slow wave generation with the different components of the alternating current and the surface charge which is induced on the antenna current-carrying elements is studied. Qualitatively, the minimum slow wave excitation could be achieved if: the electrostatic fields induced by the antenna are shielded effectively; the currents in the antenna elements and those ones induced in the shield by the antenna magnetic and electrostatic fields are directed mainly perpendicular to the steady magnetic field. In practice, both the requirements above mentioned could not met rigorously. Thus, all the existing antennas excite slow waves. Prom this point of view, properties of unshielded and shielded strap antennas are discussed. A new antenna which provides the minimum slow wave excitation is proposed. It consists of the strap current-carrying element and a number of grounded shield elements of the similar design. The antenna impedance properties are analyzed in the framework of the continuos one-dimensional model. The analysis showed that the antenna impedance could be lower than that one for simple strap antenna. Like a TEM-mode transmission line it has resonances which could be used for decreasing the reactive part of the impedance which makes easier the matching of the antenna with feeding electric circuits. The newly proposed antenna could be used both in large scale and small plasma devices. The experimental testing of it in a mirror device in comparison with a standard strap antenna is of primary interest.