ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
M. Inutake
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 49-55
Invited Review Lectures | doi.org/10.13182/FST01-A11963414
Articles are hosted by Taylor and Francis Online.
Radial potential control by use of end-plate biasing in the GAMMA10 tandem mirror is very effective to suppress low-frequency fluctuations and to achieve a reactive plasma with hot ion temperature of up to 10 keV. In order to clarify effects of both radial electric field and its shear on low-frequency fluctuations, basic experiments have been carried out a small linear device, QT-U of Tohoku University, in which systematic control and precise measurements of radial potential profiles can be done. Flute-mode and drift-mode fluctuations appear in the radial region with steep density gradient. The observed flute-mode is identified as Kelvin-Helmholtz instability driven by strong E × B drift shear. The drift-mode fluctuations depend complicatedly on both radial electric field and its shear. The drift-mode is destabilized in the region of weakly negative electric field. In the strong Eτ region, the mode is suppressed, irrespective of its sign. This behavior agrees qualitatively with that observed in the ECH mode of GAMMA10. The drift-mode in the QT-U is clearly stabilized by the increase in net ion drift shear which is defined as the sum of E × B drift shear and ion diamagnetic drift shear.