ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Alexander A. Skovoroda
Fusion Science and Technology | Volume 39 | Number 1 | January 2001 | Pages 41-48
Invited Review Lectures | doi.org/10.13182/FST01-A11963413
Articles are hosted by Taylor and Francis Online.
The conceptual project APEX (Adapted Plasma Experiment) is discussed. The APEX objective is the development of a physical foundations for the CW fusion reactor, created on a base of an alternative type of magnetic trap, which could provide a “tokamak scale” confinement time at much higher β. Linked mirrors are the prototypes of this heading. The main idea of DRACON trap – the short circuit secondary plasma currents inside the curve elements (CE) – is kept. The new principle of poloidal pseudosymmetry and the non-traditional scheme of MHD plasma stabilization by “magnetic hump” give a possibility of a new approach to reduce plasma losses.
The APEX concept provides for the Experimental Pseudo SYmmetric Linked trap (EPSYLON) design. The whole installation will be have two axisymmetric mirror parts (OME) closed with two CEs. Each OME contains the diverter. CE should have a strongly rippled magnetic field. As far as each OME and each CE is a trap with mirror confinement it is possible to start an investigation of the system from separate experiments with different parts of the whole system. The EPSYLON construction will be adapted to the experimental results. The experiment with OME is chosen now as the first step of the program. The main objective of this first experiment is the investigation of the “magnetic hump” MHD stabilization produced by divertor. EPSILON-OME installation is discussed. The closed system calculations are going in parallel.