ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
C.J. Barth
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 344-351
Plasma Diagnostics | doi.org/10.13182/FST00-A11963229
Articles are hosted by Taylor and Francis Online.
The invention of the first laser and many others after that has led to a large amount of different plasma diagnostics using some aspect of the interaction between light and plasmas. In this paper a short review of these diagnostics is given, where the emphasis will be on Thomson scattering and Laser Induced Fluorescence. Thomson scattering is a very powerful diagnostic which is applied at nearly every magnetic confinement device. When the laser wavelength is much smaller than the plasma Debye length, the scattering spectrum is a reflection of the electron velocity distribution, from which local values for the electron temperature and density can be derived. Laser Induced Fluorescence enables to determine the neutral density of different species in the plasma.