ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
NNSA awards BWXT $1.5B defense fuels contract
The Department of Energy’s National Nuclear Security Administration has awarded BWX Technologies a contract valued at $1.5 billion to build a Domestic Uranium Enrichment Centrifuge Experiment (DUECE) pilot plant in Tennessee in support of the administration’s efforts to build out a domestic supply of unobligated enriched uranium for defense-related nuclear fuel.
Karl H. Spatschek
Fusion Science and Technology | Volume 37 | Number 2 | March 2000 | Pages 95-111
Kinetic Theory | doi.org/10.13182/FST00-A11963204
Articles are hosted by Taylor and Francis Online.
In this overview, the main arguments for a kinetic description of a classical, non-relativistic many-body system are reviewed. The need and strategy for a kinetic description of plasma particles are discussed. The Vlasov, the Landau-Fokker-Planck, and the Balescu-Lenard equations are presented as the most useful kinetic equations for the particle distribution functions. In the second part, some simple applications are discussed. First, collision frequencies are derived. Second, it is shown that in the mean field approximation a linearization of the initial value problem can already give interesting insights into the (collective) dynamic behaviors. Third, quasi-linear and weak turbulence theories are discussed. Fourth, it is argued why in many cases a reduction to a plasmadynamic (fluid) description is appropriate, and popular truncations are summarized. Finally, the generality of the statistical methods is demonstrated on the example of magnetic field line diffusion.