ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
L.N. Vyacheslavov, V.F. Gurko, O.I. Meshkov, V.F. Zharov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 422-426
Poster Presentations | doi.org/10.13182/FST99-A11963898
Articles are hosted by Taylor and Francis Online.
Two laser scattering systems based on Nd-glass laser and avalanche photodiodes are proposed. First system is designed for observation of radial profiles of the electron plasma density and temperature. Each of its 2–4 spectral modules consists of 25 spatial channels and includes a bandpass interference filter, low F-number camera lens, and 25-channel linear array of the avalanche photodiodes followed by amplifiers and ADCs. Every of 25 spatial channel can view the plasma volume with an adjustable length of 1.5–15 mm along the radius of a trap. In the IR spectral region the plasma background radiation is small and the main source of noise is the amplifier noise, which permits in this case observation of a plasma of a density of 1012 cm−3 with the S/N >60.
The second system is intended for measuring the longitudinal ne and Te profiles and uses the LIDAR technique, which is more suitable for open traps than for large tokomaks due to considerable larger axial length. A relative simple short pulse version of the probe laser (0.5–1 ns, 10 J), commercially available high speed APD-preamplifier modules, and ADC, as well as very high contrast-interference filters can provide longitudinal measurements with the spatial resolution 1 ≤·20 cm and S/N > 40 for ne ⩾1012 cm−3
The probe laser (30J, 8 ns, 1.06 μm, 0.2 mrad) and the prototype of a single spectral module for radial measurements have been developed an used in an experiment.