ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Accelerator Applications
The division was organized to promote the advancement of knowledge of the use of particle accelerator technologies for nuclear and other applications. It focuses on production of neutrons and other particles, utilization of these particles for scientific or industrial purposes, such as the production or destruction of radionuclides significant to energy, medicine, defense or other endeavors, as well as imaging and diagnostics.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
L.N. Vyacheslavov, V.F. Gurko, O.I. Meshkov, V.F. Zharov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 422-426
Poster Presentations | doi.org/10.13182/FST99-A11963898
Articles are hosted by Taylor and Francis Online.
Two laser scattering systems based on Nd-glass laser and avalanche photodiodes are proposed. First system is designed for observation of radial profiles of the electron plasma density and temperature. Each of its 2–4 spectral modules consists of 25 spatial channels and includes a bandpass interference filter, low F-number camera lens, and 25-channel linear array of the avalanche photodiodes followed by amplifiers and ADCs. Every of 25 spatial channel can view the plasma volume with an adjustable length of 1.5–15 mm along the radius of a trap. In the IR spectral region the plasma background radiation is small and the main source of noise is the amplifier noise, which permits in this case observation of a plasma of a density of 1012 cm−3 with the S/N >60.
The second system is intended for measuring the longitudinal ne and Te profiles and uses the LIDAR technique, which is more suitable for open traps than for large tokomaks due to considerable larger axial length. A relative simple short pulse version of the probe laser (0.5–1 ns, 10 J), commercially available high speed APD-preamplifier modules, and ADC, as well as very high contrast-interference filters can provide longitudinal measurements with the spatial resolution 1 ≤·20 cm and S/N > 40 for ne ⩾1012 cm−3
The probe laser (30J, 8 ns, 1.06 μm, 0.2 mrad) and the prototype of a single spectral module for radial measurements have been developed an used in an experiment.