ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Vladimir E. Semenov, Artem N. Smirnov, Andrey Turlapov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 398-402
Poster Presentations | doi.org/10.13182/FST99-A11963893
Articles are hosted by Taylor and Francis Online.
A new model is developed for an electron-cyclotron-resonance-heated plasma confinement in an open mirror magnetic trap. The model is based on the simultaneous study of noncollisional kinetics of electrons and gas dynamics of ions. At the trap center, the electron distribution function is approximated by bi-Maxwell distribution (with effective temperatures T⊥ and T‖ – mean energies of the transverse and longitudinal to the magnetic field motion). Within the model framework the ion confinement time as well as the axial distribution of the ambipolar potential and plasma density has been investigated both numerically and analytically. The confinement time and potential profile are very much dependent on the electron distribution anisotropy and, in strongly anisotropic case, on the ion temperature. The ambipolar potential changes qualitatively while the ratio T⊥/T‖ exceeds a certain threshold value. Below the threshold, the potential falls off monotonously along the trap axis outwards from the trap center. After the threshold is exceeded, there appears a potential peak between the center and the plug. This potential peak retards ion escape through the plug and provides quite different confinement of ions with different charges in an ECR ion source.