ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Gennadij T. Razdobarin, Eugene E. Mukhin, Vladimir V. Semenov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 389-392
Poster Presentations | doi.org/10.13182/FST99-A11963891
Articles are hosted by Taylor and Francis Online.
ITER divertor operation is dominated by the necessity to exhaust around 200MW power via the scrape-off layer. A large fraction of the input power must be irradiated by the impurities either intrinsic or seeded. It is important that the radiation source be well distributed over the entire divertor plasma. The plasma detachment at the divertor target should be precisely adjusted as to enable a partially attached operating, that is detached near the separatrix strike point and attached further out in the scrape-off layer. To provide information on key fenomena which may limit the divertor performance is the challenging task for diagnostics in ITER.
The reliable Tc, nc profile measurements in the divertor upstream (near X-point) and downstream (divertor bottom) regions address the highly promising Thomson scattering diagnostics. The high resolution time-of-flight LIDAR Thomson scattering for the X-point and the conventional Thomson scattering technique for the divertor leg fit the reference divertor configuration with minimal impact on ITER design.