ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
S.A. Korepanov, P.A. Bagryansky, P.P. Deichuli, A.A. Ivanov, Yu.A. Tsidulko
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 345-348
Poster Presentations | doi.org/10.13182/FST99-A11963881
Articles are hosted by Taylor and Francis Online.
The diagnostic based on neutral beam injector DINA-5 is developed for the plasma density measurements at midplane of Gas Dynamic Trap (GDT1) experiment. The deuterium neutral beam with energy of 25 keV and equivalent current of up to 2 A is injected perpendicularly to plasma column at the midplane of the device. The beam is attenuated by 2–3 times passing through the plasma. The generated ions are deflected by the magnetic field and registered by a detector array located between the plasma and first wall. The deuterium ions produced in various points along the initial beam trajectory are detected in different channels. The signal in each detector depends on the local plasma density in corresponding point enabling to reconstruct the plasma density profile along the beam. In the experiments with the powerful neutral beam injection the plasma diamagnetism achieves considerable value (β ~ 20%) therefore it has to be taken into account for the accurate calculation of the D+ trajectories. The space resolution of the method was estimated to be about 2 cm. The duration of the beam (up to 4 ms) is large enough to overlap the duration of the GDT shots.