ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
S.A. Korepanov, P.A. Bagryansky, P.P. Deichuli, A.A. Ivanov, Yu.A. Tsidulko
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 345-348
Poster Presentations | doi.org/10.13182/FST99-A11963881
Articles are hosted by Taylor and Francis Online.
The diagnostic based on neutral beam injector DINA-5 is developed for the plasma density measurements at midplane of Gas Dynamic Trap (GDT1) experiment. The deuterium neutral beam with energy of 25 keV and equivalent current of up to 2 A is injected perpendicularly to plasma column at the midplane of the device. The beam is attenuated by 2–3 times passing through the plasma. The generated ions are deflected by the magnetic field and registered by a detector array located between the plasma and first wall. The deuterium ions produced in various points along the initial beam trajectory are detected in different channels. The signal in each detector depends on the local plasma density in corresponding point enabling to reconstruct the plasma density profile along the beam. In the experiments with the powerful neutral beam injection the plasma diamagnetism achieves considerable value (β ~ 20%) therefore it has to be taken into account for the accurate calculation of the D+ trajectories. The space resolution of the method was estimated to be about 2 cm. The duration of the beam (up to 4 ms) is large enough to overlap the duration of the GDT shots.