ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Mathematics & Computation
Division members promote the advancement of mathematical and computational methods for solving problems arising in all disciplines encompassed by the Society. They place particular emphasis on numerical techniques for efficient computer applications to aid in the dissemination, integration, and proper use of computer codes, including preparation of computational benchmark and development of standards for computing practices, and to encourage the development on new computer codes and broaden their use.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Vladimir M. Fedorov, Vladimir P. Tarakanov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 320-324
Poster Presentations | doi.org/10.13182/FST99-A11963876
Articles are hosted by Taylor and Francis Online.
The article present our recent results of computer simulations and theory analysis concerning of dynamics of the crossed E×B-fields back-bombardment (BKB) instability in magnetron diodes. The concept of the BKB-instability applied to show new explanation for known experimental data of an intense ion heating in accelerated plasma streams. Main features of the BKB-instability into ion diodes are following: 1) ion magnetic insulation is d0 > ri where d0 is accelerating gap across applied magnetic field B0, ri = 5V00.5/B0 is proton Larmor radius, cm; V0 – applied voltage, kV; B0 – kG; 2) EA ≠ 0 is high electric field on self or secondary emission anode electrodes; 3) main frequency oscillation of fs = fci/2 = 0.76 B0 MHz; 4) convert power efficiency of ηB = P~/P0 is up to 50%.
Radial proton HF-oscillations current density of the Jir provided by the BKB-instability excites magnetohydrodynamics waves. They are propagated in the tube plasma with azimuthal velocity v∼9 ~ 107 cm/s (Miv∼92 ~ eV0) and along the B0 with the vA ~ 4×107 cm/s -Alfven velocity. Known experimental data was demonstrated a level of the HF-oscillation power which was absorbed by proton streams by ion cyclotron heating equals up to 30% total supply power of the 1 MW.
Work supported by RFFI under grant 96-02-19215.