ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Mar 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
April 2025
Latest News
Nuclear News 40 Under 40 discuss the future of nuclear
Seven members of the inaugural Nuclear News 40 Under 40 came together on March 4 to discuss the current state of nuclear energy and what the future might hold for science, industry, and the public in terms of nuclear development.
To hear more insights from this talented group of young professionals, watch the “40 Under 40 Roundtable: Perspectives from Nuclear’s Rising Stars” on the ANS website.
Vladimir M. Fedorov, Vladimir P. Tarakanov
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 320-324
Poster Presentations | doi.org/10.13182/FST99-A11963876
Articles are hosted by Taylor and Francis Online.
The article present our recent results of computer simulations and theory analysis concerning of dynamics of the crossed E×B-fields back-bombardment (BKB) instability in magnetron diodes. The concept of the BKB-instability applied to show new explanation for known experimental data of an intense ion heating in accelerated plasma streams. Main features of the BKB-instability into ion diodes are following: 1) ion magnetic insulation is d0 > ri where d0 is accelerating gap across applied magnetic field B0, ri = 5V00.5/B0 is proton Larmor radius, cm; V0 – applied voltage, kV; B0 – kG; 2) EA ≠ 0 is high electric field on self or secondary emission anode electrodes; 3) main frequency oscillation of fs = fci/2 = 0.76 B0 MHz; 4) convert power efficiency of ηB = P~/P0 is up to 50%.
Radial proton HF-oscillations current density of the Jir provided by the BKB-instability excites magnetohydrodynamics waves. They are propagated in the tube plasma with azimuthal velocity v∼9 ~ 107 cm/s (Miv∼92 ~ eV0) and along the B0 with the vA ~ 4×107 cm/s -Alfven velocity. Known experimental data was demonstrated a level of the HF-oscillation power which was absorbed by proton streams by ion cyclotron heating equals up to 30% total supply power of the 1 MW.
Work supported by RFFI under grant 96-02-19215.