ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
Norway’s Halden reactor takes first step toward decommissioning
The government of Norway has granted the transfer of the Halden research reactor from the Institute for Energy Technology (IFE) to the state agency Norwegian Nuclear Decommissioning (NND). The 25-MWt Halden boiling water reactor operated from 1958 to 2018 and was used in the research of nuclear fuel, reactor internals, plant procedures and monitoring, and human factors.
Timofeev A.V., Tupikov S.E.
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 253-257
Oral Presentations | doi.org/10.13182/FST99-A11963862
Articles are hosted by Taylor and Francis Online.
The influence of a non-uniform electrical field, perpendicular magnetic on drift instability was studied by Sanuki et al.1,2 They have shown, that the drift instability is stabilized at a rather large gradient of an electrical field. This result was received by means of the analysis of an integral wave equation, which describes the plasma oscillations with Gaussian profile of density and linear profile of an electrical field at arbitrary Larmour radius of charged particles.
We describe the drift oscillation by the differential wave equation. This equation can be used at any profiles of plasma density and electrical field, if Larmour radius of the charged particles is rather small. In case of linear profile of an electrical field, our results confirm those received in 1,2. We have also shown, that the drift instability is transformed to Kelvin-Helmholtz instability in case of an electrical field profile with an inflexion point (smooth step profile).