ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
Kameo Ishii, Tetsuya Goto, Yasuhiro Goi, Nagayoshi Kikuno, Yuzo Katsuki, Masao Nagasaki, Yoshihiro Ono, Nobutsugu Ishibashi, Motoo Nakamura, Isao Katanuma, Atsushi Mase, Makoto Ichimura, Akiyosi Itakura, Teruo Tamano, Kiyoshi Yatsu
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 175-179
Oral Presentations | doi.org/10.13182/FST99-A11963846
Articles are hosted by Taylor and Francis Online.
Gentle hump structure on energy spectra of end-loss ions was observed in the RF driven tandem mirror plasma by use of an end-loss energy component analyzer (ELECA), which has been developed in order to directly measure velocity distribution functions of the end-loss ions.1 Ions are heated anisotropically in the central cell of the tandem mirror by the ICRF wave injection, and Alfvén ion-cyclotron (AIC) fluctuations are excited due to the anisotropic ion temperature.2 The correlation between the hump structure and the excitation of the AIC fluctuations was observed experimentally. From the viewpoints of the heating characteristics and the resonance condition, the hump energy was estimated and successfully compared with the experimetal results. Influence of the ICRF waves on the hump structure was investigated using a bounce averaged Fokker Planck code.3 The AIC fluctuations enhance the end-loss ions scattered from the trapped region to the loss region, and have direct effects upon the ion confinement. The energy flux of the enhanced end-loss ions due to the AIC fluctuations was estimated and the enhancement factor was obtained. The strong anisotropic ion heating is dangerous for the ion confinement in the open systems which contain necessarily the loss regions.