ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Education, Training & Workforce Development
The Education, Training & Workforce Development Division provides communication among the academic, industrial, and governmental communities through the exchange of views and information on matters related to education, training and workforce development in nuclear and radiological science, engineering, and technology. Industry leaders, education and training professionals, and interested students work together through Society-sponsored meetings and publications, to enrich their professional development, to educate the general public, and to advance nuclear and radiological science and engineering.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
Kameo Ishii, Tetsuya Goto, Yasuhiro Goi, Nagayoshi Kikuno, Yuzo Katsuki, Masao Nagasaki, Yoshihiro Ono, Nobutsugu Ishibashi, Motoo Nakamura, Isao Katanuma, Atsushi Mase, Makoto Ichimura, Akiyosi Itakura, Teruo Tamano, Kiyoshi Yatsu
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 175-179
Oral Presentations | doi.org/10.13182/FST99-A11963846
Articles are hosted by Taylor and Francis Online.
Gentle hump structure on energy spectra of end-loss ions was observed in the RF driven tandem mirror plasma by use of an end-loss energy component analyzer (ELECA), which has been developed in order to directly measure velocity distribution functions of the end-loss ions.1 Ions are heated anisotropically in the central cell of the tandem mirror by the ICRF wave injection, and Alfvén ion-cyclotron (AIC) fluctuations are excited due to the anisotropic ion temperature.2 The correlation between the hump structure and the excitation of the AIC fluctuations was observed experimentally. From the viewpoints of the heating characteristics and the resonance condition, the hump energy was estimated and successfully compared with the experimetal results. Influence of the ICRF waves on the hump structure was investigated using a bounce averaged Fokker Planck code.3 The AIC fluctuations enhance the end-loss ions scattered from the trapped region to the loss region, and have direct effects upon the ion confinement. The energy flux of the enhanced end-loss ions due to the AIC fluctuations was estimated and the enhancement factor was obtained. The strong anisotropic ion heating is dangerous for the ion confinement in the open systems which contain necessarily the loss regions.