ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
V. I. Dgisonis
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 170-174
Oral Presentations | doi.org/10.13182/FST99-A11963845
Articles are hosted by Taylor and Francis Online.
Hall effect is known to be especially significant for compressible plasmas with flows that are usual for the present-day fusion experiments. Hall effect is able to change a behavior of the plasma parameters typical for ideal magnetohydrodynamics (MHD), e.g., it produces nonmonotonic density profile, current eddies, and modifies plasma stability conditions. The existence of the Hall effect was verified both experimentally and computationally. However, still now there is no general formalism, which would allow to analyse plasma stability accounting for the Hall effect in the systems of rather general geometry.
The formalism developed is aimed to present a variational stability criterion similar to the energy principle, which is well known for static equilibrium in the frame of ideal MHD. The most relevant hydrodynamic model accounting for both Hall effect and plasma flows, namely, Hall MHD, is figured out. The variational approach is appeared to be fruitful due to accounting for all the principal conservation laws inherent in the model equations. The method is based on the regular procedure of finding the variational symmetries of partial differential equations.