ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Decommissioning & Environmental Sciences
The mission of the Decommissioning and Environmental Sciences (DES) Division is to promote the development and use of those skills and technologies associated with the use of nuclear energy and the optimal management and stewardship of the environment, sustainable development, decommissioning, remediation, reutilization, and long-term surveillance and maintenance of nuclear-related installations, and sites. The target audience for this effort is the membership of the Division, the Society, and the public at large.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
V. I. Dgisonis
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 170-174
Oral Presentations | doi.org/10.13182/FST99-A11963845
Articles are hosted by Taylor and Francis Online.
Hall effect is known to be especially significant for compressible plasmas with flows that are usual for the present-day fusion experiments. Hall effect is able to change a behavior of the plasma parameters typical for ideal magnetohydrodynamics (MHD), e.g., it produces nonmonotonic density profile, current eddies, and modifies plasma stability conditions. The existence of the Hall effect was verified both experimentally and computationally. However, still now there is no general formalism, which would allow to analyse plasma stability accounting for the Hall effect in the systems of rather general geometry.
The formalism developed is aimed to present a variational stability criterion similar to the energy principle, which is well known for static equilibrium in the frame of ideal MHD. The most relevant hydrodynamic model accounting for both Hall effect and plasma flows, namely, Hall MHD, is figured out. The variational approach is appeared to be fruitful due to accounting for all the principal conservation laws inherent in the model equations. The method is based on the regular procedure of finding the variational symmetries of partial differential equations.