ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Reactor Physics
The division's objectives are to promote the advancement of knowledge and understanding of the fundamental physical phenomena characterizing nuclear reactors and other nuclear systems. The division encourages research and disseminates information through meetings and publications. Areas of technical interest include nuclear data, particle interactions and transport, reactor and nuclear systems analysis, methods, design, validation and operating experience and standards. The Wigner Award heads the awards program.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
V. I. Dgisonis
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 170-174
Oral Presentations | doi.org/10.13182/FST99-A11963845
Articles are hosted by Taylor and Francis Online.
Hall effect is known to be especially significant for compressible plasmas with flows that are usual for the present-day fusion experiments. Hall effect is able to change a behavior of the plasma parameters typical for ideal magnetohydrodynamics (MHD), e.g., it produces nonmonotonic density profile, current eddies, and modifies plasma stability conditions. The existence of the Hall effect was verified both experimentally and computationally. However, still now there is no general formalism, which would allow to analyse plasma stability accounting for the Hall effect in the systems of rather general geometry.
The formalism developed is aimed to present a variational stability criterion similar to the energy principle, which is well known for static equilibrium in the frame of ideal MHD. The most relevant hydrodynamic model accounting for both Hall effect and plasma flows, namely, Hall MHD, is figured out. The variational approach is appeared to be fruitful due to accounting for all the principal conservation laws inherent in the model equations. The method is based on the regular procedure of finding the variational symmetries of partial differential equations.