ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
V. I. Dgisonis
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 170-174
Oral Presentations | doi.org/10.13182/FST99-A11963845
Articles are hosted by Taylor and Francis Online.
Hall effect is known to be especially significant for compressible plasmas with flows that are usual for the present-day fusion experiments. Hall effect is able to change a behavior of the plasma parameters typical for ideal magnetohydrodynamics (MHD), e.g., it produces nonmonotonic density profile, current eddies, and modifies plasma stability conditions. The existence of the Hall effect was verified both experimentally and computationally. However, still now there is no general formalism, which would allow to analyse plasma stability accounting for the Hall effect in the systems of rather general geometry.
The formalism developed is aimed to present a variational stability criterion similar to the energy principle, which is well known for static equilibrium in the frame of ideal MHD. The most relevant hydrodynamic model accounting for both Hall effect and plasma flows, namely, Hall MHD, is figured out. The variational approach is appeared to be fruitful due to accounting for all the principal conservation laws inherent in the model equations. The method is based on the regular procedure of finding the variational symmetries of partial differential equations.