ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Feb 2025
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
March 2025
Nuclear Technology
Fusion Science and Technology
February 2025
Latest News
Colin Judge: Testing structural materials in Idaho’s newest hot cell facility
Idaho National Laboratory’s newest facility—the Sample Preparation Laboratory (SPL)—sits across the road from the Hot Fuel Examination Facility (HFEF), which started operating in 1975. SPL will host the first new hot cells at INL’s Materials and Fuels Complex (MFC) in 50 years, giving INL researchers and partners new flexibility to test the structural properties of irradiated materials fresh from the Advanced Test Reactor (ATR) or from a partner’s facility.
Materials meant to withstand extreme conditions in fission or fusion power plants must be tested under similar conditions and pushed past their breaking points so performance and limitations can be understood and improved. Once irradiated, materials samples can be cut down to size in SPL and packaged for testing in other facilities at INL or other national laboratories, commercial labs, or universities. But they can also be subjected to extreme thermal or corrosive conditions and mechanical testing right in SPL, explains Colin Judge, who, as INL’s division director for nuclear materials performance, oversees SPL and other facilities at the MFC.
SPL won’t go “hot” until January 2026, but Judge spoke with NN staff writer Susan Gallier about its capabilities as his team was moving instruments into the new facility.
T. Cho, J. Kohagura, M. Hirata, T. Numakura, R. Minami, T. Okamura, T. Sasuga, Y. Nishizawa, M. Yoshida, M. Yoshikawa, Y. Nakashima, Y. Sakamoto, T. Tamano, K. Yatsu, S. Miyoshi
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 151-155
Oral Presentations | doi.org/10.13182/FST99-A11963841
Articles are hosted by Taylor and Francis Online.
(i) A scaling law and its physics mechanism of potential formation for tandem-mirror plasma confinement are investigated. The first result of a generalized scaling covering over two typical plasma operational modes in the GAMMA 10 tandem mirror is presented; that is, a previously obtained potential-formation scaling in a plasma operational mode with a few-kV confinement potentials is found to be extended and generalized to a potential scaling in a hot-ion operational mode with thermal-neutron yield, when we take account of the dependence of potential formation on the ratio of the plug to the central-cell densities as well as the relation of electron temperatures in the central cell to thermal-barrier potentials. The finding of the existence of the same physics basis underlying in these two typical modes may provide the future possibility of simultaneously obtained hot-ion plasmas with high potentials. (ii) For these scaling studies, we have constructed the physics fundamentals of x-ray diagnostics; that is, we proposed a novel theory on the energy response of a widely utilized semiconductor x-ray detector. The theory solves a serious problem of a recent finding of the invalidity of the conventional standard theory on the response of such an x-ray detector; the conventional theory has widely been believed and employed over the last quarter of the century in various research fields including plasma-electron researches in most of plasma-confinement devices. The novel theory on the semiconductor x-ray response is characterized by the inclusion of a three-dimensional diffusion of x-ray-produced minority carriers in the field-free substrate of a detector, while the conventional theory is based only on the charges from an x-ray-sensitive depletion layer (i.e., the region of a p-n junction). Various and serious effects of the novel theory on the determination of electron temperatures and their radial profiles (i.e., the electron-temperature gradient) are also represented.