ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
September 2025
Nuclear Technology
Fusion Science and Technology
October 2025
Latest News
Empowering the next generation: ANS’s newest book focuses on careers in nuclear energy
A new career guide for the nuclear energy industry is now available: The Nuclear Empowered Workforce by Earnestine Johnson. Drawing on more than 30 years of experience across 16 nuclear facilities, Johnson offers a practical, insightful look into some of the many career paths available in commercial nuclear power. To mark the release, Johnson sat down with Nuclear News for a wide-ranging conversation about her career, her motivation for writing the book, and her advice for the next generation of nuclear professionals.
When Johnson began her career at engineering services company Stone & Webster, she entered a field still reeling from the effects of the Three Mile Island incident in 1979, nearly 15 years earlier. Her hiring cohort was the first group of new engineering graduates the company had brought on since TMI, a reflection of the industry-wide pause in nuclear construction. Her first long-term assignment—at the Millstone site in Waterford, Conn., helping resolve design issues stemming from TMI—marked the beginning of a long and varied career that spanned positions across the country.
N.I. Arkhipov, V.P. Bakhtin, S.M. Kurkin, V.M. Safronov, D.A. Toporkov, S.G. Vasenin, H. Wuerz, A.M. Zhitlukhin
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 131-135
Oral Presentations | doi.org/10.13182/FST99-A11963837
Articles are hosted by Taylor and Francis Online.
Process of interaction of intense plasma fluxes up to 10 MW/cm2 with solid targets was studied experimentally. It was shown that a dense plasma layer arises near target surface and protects the target from direct effect of an incoming high temperature plasma. Spatial distribution and temporal behavior of the shielding layer depend on the target materials. For a high Z materials (tungsten, copper, stainless steel) dense plasma layer is localized near the surface during all time of the interaction. For a low Z materials (graphite, boron nitrid, plexiglass, aluminium) low dense plasma cloud – “corona” rapidly expands toward incoming plasma flow along the magnetic field lines. The experiments demonstrated effective shielding of the different materials surface from excessive evaporation. Bulk energy of incoming plasma is converted into SXR radiation in near surface layer for a high Z materials and, partially, into target plasma heating for a low Z materials. Measured parameters of plasma shield are used as a benchmark in developing numerical codes to predict a real damage for ITER divertor plates due to hard disruptions.