ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Thermal Hydraulics
The division provides a forum for focused technical dialogue on thermal hydraulic technology in the nuclear industry. Specifically, this will include heat transfer and fluid mechanics involved in the utilization of nuclear energy. It is intended to attract the highest quality of theoretical and experimental work to ANS, including research on basic phenomena and application to nuclear system design.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Kiyoshi Yatsu, Leonid G. Bruskin, Teruji Cho, Minoru Hamada, Mafumi Hirata, Hitoshi Hojo, Makoto Ichimura, Kameo Ishii, Khairul M. Islam, Akiyoshi Itakura, Isao Katanuma, Yasuhito Kiwamoto, Junko Kohagura, Shigeyuki Kubota, Atsushi Mase, Yousuke Nakashima, Teruo Saito, Yoshiteru Sakamoto, Teruo Tamano, Yoshinori Tatematsu, Tokihiko Tokuzawa, Masayuki Yoshikawa
Fusion Science and Technology | Volume 35 | Number 1 | January 1999 | Pages 52-59
Invited Lectures | doi.org/10.13182/FST99-A11963826
Articles are hosted by Taylor and Francis Online.
Potential confinement of an ICRF-heated high-ion temperature plasma in GAMMA 10 is experimentally studied. The potential confinement was shown from data of one-end plugging and both-end plugging. The waveform of end loss current and an analysis of end loss ion energies have also indicated potential formation and confinement. The central cell line density increases 50% by the potential confinement. Some radial losses were observed in the anchor and/or plug/barrier regions and a rate of the radial loss was measured by using the data from one-end plugging. Under an experimental condition, the radial loss rate was estimated to be about 3%. In order to reduce the radial loss, conducting plates were installed adjacent to the plasma in the anchor transition region. The density increase of 60 % was attained after installation of the conducting plates and a higher density increase can be expected in the near future. The density increase was 50% before installation of the conducting plates. Controllability and reproducibility of the potential confinement are also improved after installation of the conducting plates.