ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Installations Safety
Devoted specifically to the safety of nuclear installations and the health and safety of the public, this division seeks a better understanding of the role of safety in the design, construction and operation of nuclear installation facilities. The division also promotes engineering and scientific technology advancement associated with the safety of such facilities.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
R. E. Olson, G. A. Chandler, M. S. Derzon, D. E. Hebron, J. S. Lash, R. J. Leeper, T. J. Nash, G. E. Rochau, T. W. L. Sanford, N. B. Alexander, C. R. Gibson
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 260-265
Technical Paper | doi.org/10.13182/FST99-A11963934
Articles are hosted by Taylor and Francis Online.
We describe designs of hohlraums and capsules for both ignition (∼1–10 MJ) and high yield (up to ∼200 MJ) Z-pinch driven indirect-drive ICF concepts. Two potential Z-pinch hohlraum configurations – 1) the “static wall” or “on-axis” hohlraum; and 2) the “imploding liner” or “dynamic” hohlraum – are considered. Both concepts involve cryogenic, DT-filled capsules (∼2–4 mm in diameter) with Be or CH ablators (O, F, and Cu are currently being considered as dopants). Both types of hohlraums involve a Helium and/or CH foam fill. In the static wall hohlraum concept, the ICF capsule is isolated from the x-ray generation region. Advantages in the areas of capsule drive symmetry and diagnostic access might be gained from this arrangement. In the dynamic hohlraum, the ICF capsule has a direct view of the stagnation radiation. The potential advantage would result from the higher x-ray intensity and larger total capsule absorbed energy.