ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Nonproliferation Policy
The mission of the Nuclear Nonproliferation Policy Division (NNPD) is to promote the peaceful use of nuclear technology while simultaneously preventing the diversion and misuse of nuclear material and technology through appropriate safeguards and security, and promotion of nuclear nonproliferation policies. To achieve this mission, the objectives of the NNPD are to: Promote policy that discourages the proliferation of nuclear technology and material to inappropriate entities. Provide information to ANS members, the technical community at large, opinion leaders, and decision makers to improve their understanding of nuclear nonproliferation issues. Become a recognized technical resource on nuclear nonproliferation, safeguards, and security issues. Serve as the integration and coordination body for nuclear nonproliferation activities for the ANS. Work cooperatively with other ANS divisions to achieve these objective nonproliferation policies.
Meeting Spotlight
International Conference on Mathematics and Computational Methods Applied to Nuclear Science and Engineering (M&C 2025)
April 27–30, 2025
Denver, CO|The Westin Denver Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
June 2025
Nuclear Technology
Fusion Science and Technology
May 2025
Latest News
Argonne’s METL gears up to test more sodium fast reactor components
Argonne National Laboratory has successfully swapped out an aging cold trap in the sodium test loop called METL (Mechanisms Engineering Test Loop), the Department of Energy announced April 23. The upgrade is the first of its kind in the United States in more than 30 years, according to the DOE, and will help test components and operations for the sodium-cooled fast reactors being developed now.
R. E. Olson, G. A. Chandler, M. S. Derzon, D. E. Hebron, J. S. Lash, R. J. Leeper, T. J. Nash, G. E. Rochau, T. W. L. Sanford, N. B. Alexander, C. R. Gibson
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 260-265
Technical Paper | doi.org/10.13182/FST99-A11963934
Articles are hosted by Taylor and Francis Online.
We describe designs of hohlraums and capsules for both ignition (∼1–10 MJ) and high yield (up to ∼200 MJ) Z-pinch driven indirect-drive ICF concepts. Two potential Z-pinch hohlraum configurations – 1) the “static wall” or “on-axis” hohlraum; and 2) the “imploding liner” or “dynamic” hohlraum – are considered. Both concepts involve cryogenic, DT-filled capsules (∼2–4 mm in diameter) with Be or CH ablators (O, F, and Cu are currently being considered as dopants). Both types of hohlraums involve a Helium and/or CH foam fill. In the static wall hohlraum concept, the ICF capsule is isolated from the x-ray generation region. Advantages in the areas of capsule drive symmetry and diagnostic access might be gained from this arrangement. In the dynamic hohlraum, the ICF capsule has a direct view of the stagnation radiation. The potential advantage would result from the higher x-ray intensity and larger total capsule absorbed energy.