ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Nuclear Criticality Safety
NCSD provides communication among nuclear criticality safety professionals through the development of standards, the evolution of training methods and materials, the presentation of technical data and procedures, and the creation of specialty publications. In these ways, the division furthers the exchange of technical information on nuclear criticality safety with the ultimate goal of promoting the safe handling of fissionable materials outside reactors.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
Jeffery F. Latkowski, Jorge J. Sanchez, Lee C. Pittenger
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 255-259
Technical Paper | doi.org/10.13182/FST99-A11963933
Articles are hosted by Taylor and Francis Online.
During yield operations, the materials within the National Ignition Facility (NIF) cryogenic target positioner will be exposed to high fluences of high-energy neutrons. If left unchecked, these neutrons could deposit unacceptably high amounts of energy within the cryogenic fluids. In addition, these neutrons will induce residual radioactivity within the target positioner and may lead to intolerable dose rates for maintenance personnel. Through careful design and selection of materials, however, these effects may be mitigated. The present work uses nominal design characteristics for the cryogenic target positioner to show that traditional cryogenic and structural materials will not produce an acceptable design. Further, we develop an alternate design that addresses the issues of neutron shielding and activation.