ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
A. Nikroo, D.A. Steinman
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 220-223
Technical Paper | doi.org/10.13182/FST99-A11963927
Articles are hosted by Taylor and Francis Online.
Large glass shells (≥ 1200 μm diameter) made by the traditional very high temperature (1650°C) long drop tower are usually wrinkled. We have found that these shells soften at relatively low temperatures. We have enlarged these shells by filling them with a few atmospheres of helium and dropping them down a very short (few feet long) tower heated to 900 to 1100°C. The helium acts as a blowing agent as the shell goes through the heated zone and causes the shells to grow larger. We have been able to smooth out large wrinkled shells by this process, as well. Glass shells as large as 2 mm in diameter and less than 6 μm out-of-round that do not have any obvious wrinkles have been made. In addition, the same process can be applied to both poly-alpha-methylstyrene (PAMS) and glow discharge polymer (GDP) shells at lower tower temperatures. Roundness of the enlarged shells is very much dependent on the wall thickness uniformity of the initial mandrels.