ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Robotics & Remote Systems
The Mission of the Robotics and Remote Systems Division is to promote the development and application of immersive simulation, robotics, and remote systems for hazardous environments for the purpose of reducing hazardous exposure to individuals, reducing environmental hazards and reducing the cost of performing work.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
A. Nikroo, D.A. Steinman
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 212-215
Technical Paper | doi.org/10.13182/FST99-A11963925
Articles are hosted by Taylor and Francis Online.
We have successfully sputter coated sub-micron layers of quartz onto plasma polymer shells. An agitation mechanism based on an electromagnetic shaker was used. Coatings as thin as 0.4 μm that retain their integrity have been deposited. These coatings have permeation rates against helium at room temperature that are similar to those of thermal quartz. However, the permeation rates to D2 and argon of coatings thinner than ≈ 2 μm are higher than expected. In contrast, coatings thicker than 2 μm had D2 half-lives that were long enough to make them useful as a permeation barrier. Diffusion along grain boundaries or through pinholes is a likely reason for the high permeation rates through the thinner coatings. Because plasma polymer becomes thermally unstable near 300°C, these composite shells have to be filled at a maximum temperature of 250°C.