ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
Conference on Nuclear Training and Education: A Biennial International Forum (CONTE 2025)
February 3–6, 2025
Amelia Island, FL|Omni Amelia Island Resort
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
January 2025
Nuclear Technology
Fusion Science and Technology
Latest News
Christmas Night
Twas the night before Christmas when all through the houseNo electrons were flowing through even my mouse.
All devices were plugged in by the chimney with careWith the hope that St. Nikola Tesla would share.
E. L. Alfonso, F.-Y. Tsai, S.-H. Chen, R. Q. Gram, D. R. Harding
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 131-137
Technical Paper | doi.org/10.13182/FST99-A11963916
Articles are hosted by Taylor and Francis Online.
Hollow polyimide shells, for use as ICF targets, were fabricated by co-depositing monomer precursors from the vapor phase onto bounced spherical mandrels. The process involved two stages: first, the deposited monomers (pyromellitic dianhydride and 4,4′-oxydianiline) reacted on the mandrel surface to form polyamic acid; second, the mandrel was heated to 300°C to imidize the polyamic acid and to decompose the mandrel. During this latter process the decomposed mandrel diffused through the thermally stable coating, leaving a polyimide shell. Depositions were performed under low (∼10−3 Torr) and high (∼10−6 Torr) vacuum. Also, flat witness films of polyimide deposited on Si wafers and NaCl allowed the mechanical properties and chemical composition of the film during the heating cycle to be measured. Polyimide shells with diameters ranging from 700 to 950 μm and wall thicknesses ranging from 2 to 13 μm were produced. The shell's sphericity was greater than 99%. Burst and buckle pressure tests on these shells yielded the estimated mechanical strength properties. The elastic modulus and tensile strength were ∼15 GPa and ∼300 MPa, respectively. The permeability of D2 through polyamic acid at 25°C was 7.4 × 10−17 mol·m/m2·Pa·s and increased to 6.4 × 10−16 mol·m/m2·Pa·s at 25°C upon curing the shell to 150°C. The permeability of D2 at 25°C through vapor-deposited polyimide flat films was measured to be 240 times greater than through the as-deposited polyamic acid, and about 7 times greater than through commer ially available solution-cast Kapton.