ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2025 ANS Winter Conference & Expo
November 9–12, 2025
Washington, DC|Washington Hilton
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Sep 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
October 2025
Nuclear Technology
September 2025
Fusion Science and Technology
Latest News
IAEA again raises global nuclear power projections
Noting recent momentum behind nuclear power, the International Atomic Energy Agency has revised up its projections for the expansion of nuclear power, estimating that global nuclear operational capacity will more than double by 2050—reaching 2.6 times the 2024 level—with small modular reactors expected to play a pivotal role in this high-case scenario.
IAEA director general Rafael Mariano Grossi announced the new projections, contained in the annual report Energy, Electricity, and Nuclear Power Estimates for the Period up to 2050 at the 69th IAEA General Conference in Vienna.
In the report’s high-case scenario, nuclear electrical generating capacity is projected to increase to from 377 GW at the end of 2024 to 992 GW by 2050. In a low-case scenario, capacity rises 50 percent, compared with 2024, to 561 GW. SMRs are projected to account for 24 percent of the new capacity added in the high case and for 5 percent in the low case.
E. L. Alfonso, F.-Y. Tsai, S.-H. Chen, R. Q. Gram, D. R. Harding
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 131-137
Technical Paper | doi.org/10.13182/FST99-A11963916
Articles are hosted by Taylor and Francis Online.
Hollow polyimide shells, for use as ICF targets, were fabricated by co-depositing monomer precursors from the vapor phase onto bounced spherical mandrels. The process involved two stages: first, the deposited monomers (pyromellitic dianhydride and 4,4′-oxydianiline) reacted on the mandrel surface to form polyamic acid; second, the mandrel was heated to 300°C to imidize the polyamic acid and to decompose the mandrel. During this latter process the decomposed mandrel diffused through the thermally stable coating, leaving a polyimide shell. Depositions were performed under low (∼10−3 Torr) and high (∼10−6 Torr) vacuum. Also, flat witness films of polyimide deposited on Si wafers and NaCl allowed the mechanical properties and chemical composition of the film during the heating cycle to be measured. Polyimide shells with diameters ranging from 700 to 950 μm and wall thicknesses ranging from 2 to 13 μm were produced. The shell's sphericity was greater than 99%. Burst and buckle pressure tests on these shells yielded the estimated mechanical strength properties. The elastic modulus and tensile strength were ∼15 GPa and ∼300 MPa, respectively. The permeability of D2 through polyamic acid at 25°C was 7.4 × 10−17 mol·m/m2·Pa·s and increased to 6.4 × 10−16 mol·m/m2·Pa·s at 25°C upon curing the shell to 150°C. The permeability of D2 at 25°C through vapor-deposited polyimide flat films was measured to be 240 times greater than through the as-deposited polyamic acid, and about 7 times greater than through commer ially available solution-cast Kapton.