ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Mike A. Salazar, Lee Salzer, Robert Day
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 123-125
Technical Paper | doi.org/10.13182/FST99-A11963914
Articles are hosted by Taylor and Francis Online.
Inertial Confinement Fusion (ICF) ignition targets require smooth and well-characterized deuterium/tritium (DT) ice layers. Los Alamos is developing Resonant Ultrasound Spectroscopy1 (RUS) to measure the internal pressure in the targets at room temperature after filling with DT. RUS techniques also can detect and measure the amplitudes of low modal surface roughness perturbations of the target shell interior.
The experiments required beryllium capsules with a nominal inside radius of 1 mm and a spherical outside radius of 3 mm. The capsules have various spherical harmonic contours up to mode 12 machined into their interior surfaces. The capsules are constructed from hemispheres using an epoxy adhesive2 and then filled to ∼270 atm with helium or deuterium gas.
This paper describes the adhesive joint design, machining techniques, and interior geometry inspection techniques. It also describes the fixtures needed to assemble, fill, and pressure test the capsules.