ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Materials Science & Technology
The objectives of MSTD are: promote the advancement of materials science in Nuclear Science Technology; support the multidisciplines which constitute it; encourage research by providing a forum for the presentation, exchange, and documentation of relevant information; promote the interaction and communication among its members; and recognize and reward its members for significant contributions to the field of materials science in nuclear technology.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
First astatine-labeled compound shipped in the U.S.
The Department of Energy’s National Isotope Development Center (NIDC) on March 31 announced the successful long-distance shipment in the United States of a biologically active compound labeled with the medical radioisotope astatine-211 (At-211). Because previous shipments have included only the “bare” isotope, the NIDC has described the development as “unleashing medical innovation.”
R. McEachern, C. Alford
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 115-118
Technical Paper | doi.org/10.13182/FST99-A11963912
Articles are hosted by Taylor and Francis Online.
We are studying the feasibility of using boron doping to refine the grain structure of sputter-deposited Be for NIF ignition capsule ablators. The goal is to improve the surface finish and homogeneity of these coatings. Films deposited on flat silicon substrates display a pronounced change in structure at a concentration of ∼11 at.% B. At lower levels of B, grain sizes of about 200 nm are observed. AFM images show the roughness of these films to be about 20 nm rms. At higher levels of B, the grains size drops to below 50 nm and the roughness decreases to less than 2.5 nm rms. Films deposited on capsules do not show the same behavior. In particular, at 15 at.% B, the capsule coatings have nodular structure with an rms roughness of greater than 50 nm. When viewed in cross section, however, no structure is seen with either the flat films or the capsule coatings. We believe that differences in substrate temperature may be largely responsible for the observed behavior.