ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Aerospace Nuclear Science & Technology
Organized to promote the advancement of knowledge in the use of nuclear science and technologies in the aerospace application. Specialized nuclear-based technologies and applications are needed to advance the state-of-the-art in aerospace design, engineering and operations to explore planetary bodies in our solar system and beyond, plus enhance the safety of air travel, especially high speed air travel. Areas of interest will include but are not limited to the creation of nuclear-based power and propulsion systems, multifunctional materials to protect humans and electronic components from atmospheric, space, and nuclear power system radiation, human factor strategies for the safety and reliable operation of nuclear power and propulsion plants by non-specialized personnel and more.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Hiroyuki Shidara, Kazunobu Nagasaki, Kinzo Sakamoto, Hidetoshi Yukimoto, Masahiko Nakasuga, Fumimichi Sano, Katsumi Kondo, Tohru Mizuuchi, Hiroyuki Okada, Sakae Besshou, Shinji Kobayashi, Yoshito Manabe, Hayato Kawazome, Tasho Takamiya, Yoshinori Ohno, Hiroyasu Kubo, Yusuke Nishioka, Masao Iriguchi, Masashi Kaneko, Koichi Takahashi, Yohei Fukagawa, Yuya Morita, Masaki Yamada, Shingo Nakazawa, Shintaro Tsuboi, Shigeru Nishio, Victor Orlov, Alexander Pavelyev, Alexander Tolkachev, Victor Tribaldos, Tokuhiro Obiki
Fusion Science and Technology | Volume 45 | Number 1 | January 2004 | Pages 41-48
Technical Paper | doi.org/10.13182/FST04-A424
Articles are hosted by Taylor and Francis Online.
A 70-GHz electron cyclotron resonance heating (ECRH) system has been constructed in a helical-axis heliotron device, Heliotron J, in order to realize localized heating and current drive experiments. Since the Heliotron J plasma has a three-dimensional complex shape, the ECRH system is designed to satisfy the requirement of wide steering capability in both the toroidal and poloidal directions. The low-power transmission test shows that the beam radius of the focused Gaussian beam is 22 mm at the magnetic axis, which is small enough compared to the averaged minor plasma radius (170 mm), and the launching system covers a wide toroidal steering range from perpendicular to tangential injection by replacing the steering plane mirror. Since these characteristics satisfy the condition for controlling the power localization in the three-dimensional helical-axis configuration, it is possible to explore the on- and off-axis heating over most of the plasma radius (0 < r/a < 0.7) and the electron cyclotron current drive. In the high-power transmission test, the transmission efficiency of the 20-m corrugated waveguide is 92%, and the available output power to the vacuum vessel is up to 0.4 MW. Plasma production and heating are successfully performed using this ECRH system.