ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Radiation Protection & Shielding
The Radiation Protection and Shielding Division is developing and promoting radiation protection and shielding aspects of nuclear science and technology — including interaction of nuclear radiation with materials and biological systems, instruments and techniques for the measurement of nuclear radiation fields, and radiation shield design and evaluation.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Colin J. Horsfield, Wigen Nazarov, Kevin Oades
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 95-100
Technical Paper | doi.org/10.13182/FST99-A11963909
Articles are hosted by Taylor and Francis Online.
A method for the production of a foam filled target with two regions of different densities is described in this paper. These two different density regions are separated by a 1 μm thick film, with a roughness of 5 μm rms peak to valley. The two regions are filled with a homogeneous, different density foams. These targets were designed to investigate the Richtmyer-Meshkov instability in the plasma region. The production of these targets using the in-situ polymerization technique is described. Several approaches for the production of these targets are examined. Triacrylate foams with densities of 40 mg cm−3 and 200 mg cm−3 were used in the targets.