ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Explore membership for yourself or for your organization.
Conference Spotlight
2026 ANS Annual Conference
May 31–June 3, 2026
Denver, CO|Sheraton Denver
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Dec 2025
Jul 2025
Latest Journal Issues
Nuclear Science and Engineering
January 2026
Nuclear Technology
December 2025
Fusion Science and Technology
November 2025
Latest News
AI at work: Southern Nuclear’s adoption of Copilot agents drives fleet forward
Southern Nuclear is leading the charge in artificial intelligence integration, with employee-developed applications driving efficiencies in maintenance, operations, safety, and performance.
The tools span all roles within the company, with thousands of documented uses throughout the fleet, including improved maintenance efficiency, risk awareness in maintenance activities, and better-informed decision-making. The data-intensive process of preparing for and executing maintenance operations is streamlined by leveraging AI to put the right information at the fingertips for maintenance leaders, planners, schedulers, engineers, and technicians.
Robert P. Keatch, Brian Lawrenson, F. Barrie Lewis, Tony C. Tyrrell
Fusion Science and Technology | Volume 35 | Number 2 | March 1999 | Pages 85-89
Technical Paper | doi.org/10.13182/FST99-A11963907
Articles are hosted by Taylor and Francis Online.
This paper describes the processes developed for “micromachining” novel, three-dimensional structures into silicon wafer substrates. The structural detail and dimensions required are similar to those encountered in the manufacture of integrated circuits and consequently, the techniques of oxidation, photolithography, wet, and dry etching, and vacuum deposition all have the potential for use in this area of microfabrication. Although the techniques described are primarily directed towards new processes for the production of miniature free-standing laser targets with varied surface profiles, these techniques are not limited to this, and can also be applied to areas such as microsensors and biomedical technology