ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fuel Cycle & Waste Management
Devoted to all aspects of the nuclear fuel cycle including waste management, worldwide. Division specific areas of interest and involvement include uranium conversion and enrichment; fuel fabrication, management (in-core and ex-core) and recycle; transportation; safeguards; high-level, low-level and mixed waste management and disposal; public policy and program management; decontamination and decommissioning environmental restoration; and excess weapons materials disposition.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
Mark Newton, Mike Wilson
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1122-1126
National Ignition Facility-Laser Facilities | doi.org/10.13182/FST98-A11963764
Articles are hosted by Taylor and Francis Online.
The National Ignition Facility (NIF), being built at Lawrence Livermore National Laboratory (LLNL) will utilize a 1.8 MJ glass laser to study inertial confinement fusion. This laser will be driven by a power conditioning system which must simultaneously deliver over 260 MJ of electrical energy to the nearly 7700 flashlamps. The power conditioning system is divided into independent modules that store, shape and deliver pulses of energy to the flashlamps.
The NIF power conditioning system which is being designed and built by Sandia National Laboratory (SNL) in collaboration with LLNL and industrial partners, is a different architecture from any laser power conditioning system previously built at LLNL. This particular design architecture was chosen as the most cost-effective way to reliably deliver the large amount of energy needed for NIF.
This paper will describe the development and design of the NIF power conditioning system. It will discuss the design objectives as well as the key design issues and technical hurdles that are being addressed in an ongoing component development and system validation program being supported by both SNL and LLNL.