ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Fusion Energy
This division promotes the development and timely introduction of fusion energy as a sustainable energy source with favorable economic, environmental, and safety attributes. The division cooperates with other organizations on common issues of multidisciplinary fusion science and technology, conducts professional meetings, and disseminates technical information in support of these goals. Members focus on the assessment and resolution of critical developmental issues for practical fusion energy applications.
Meeting Spotlight
2027 ANS Winter Conference and Expo
October 31–November 4, 2027
Washington, DC|The Westin Washington, DC Downtown
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Nov 2024
Jul 2024
Latest Journal Issues
Nuclear Science and Engineering
December 2024
Nuclear Technology
Fusion Science and Technology
November 2024
Latest News
Disney World should have gone nuclear
There is extra significance to the American Nuclear Society holding its annual meeting in Orlando, Florida, this past week. That’s because in 1967, the state of Florida passed a law allowing Disney World to build a nuclear power plant.
L. A. El-Guebaly, ARIES Team
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1084-1088
Fusion Power Reactors (Poster Session) | doi.org/10.13182/FST98-A11963758
Articles are hosted by Taylor and Francis Online.
The ARIES team is presently studying a fusion power plant based on the spherical tokamak (ST) concept. This paper addresses the key nuclear issues for spherical tokamaks and illustrates the impact of the neutronics factors on the ARIES-ST design. A three-dimensional analysis was carried out for an interim design to determine the key nuclear parameters. Preceding the 3-D analysis, a series of parametric 1-D analyses were performed to guide the design toward the final configuration. Comparing the 1-D and 3-D results, important differences were identified and attributed mainly to the angular distribution of the incident source neutrons on the first wall. Those differences are unique to spherical tokamaks.