ANS is committed to advancing, fostering, and promoting the development and application of nuclear sciences and technologies to benefit society.
Explore the many uses for nuclear science and its impact on energy, the environment, healthcare, food, and more.
Division Spotlight
Isotopes & Radiation
Members are devoted to applying nuclear science and engineering technologies involving isotopes, radiation applications, and associated equipment in scientific research, development, and industrial processes. Their interests lie primarily in education, industrial uses, biology, medicine, and health physics. Division committees include Analytical Applications of Isotopes and Radiation, Biology and Medicine, Radiation Applications, Radiation Sources and Detection, and Thermal Power Sources.
Meeting Spotlight
ANS Student Conference 2025
April 3–5, 2025
Albuquerque, NM|The University of New Mexico
Standards Program
The Standards Committee is responsible for the development and maintenance of voluntary consensus standards that address the design, analysis, and operation of components, systems, and facilities related to the application of nuclear science and technology. Find out What’s New, check out the Standards Store, or Get Involved today!
Latest Magazine Issues
Apr 2025
Jan 2025
Latest Journal Issues
Nuclear Science and Engineering
May 2025
Nuclear Technology
April 2025
Fusion Science and Technology
Latest News
General Kenneth Nichols and the Manhattan Project
Nichols
The Oak Ridger has published the latest in a series of articles about General Kenneth D. Nichols, the Manhattan Project, and the 1954 Atomic Energy Act. The series has been produced by Nichols’ grandniece Barbara Rogers Scollin and Oak Ridge (Tenn.) city historian David Ray Smith. Gen. Nichols (1907–2000) was the district engineer for the Manhattan Engineer District during the Manhattan Project.
As Smith and Scollin explain, Nichols “had supervision of the research and development connected with, and the design, construction, and operation of, all plants required to produce plutonium-239 and uranium-235, including the construction of the towns of Oak Ridge, Tennessee, and Richland, Washington. The responsibility of his position was massive as he oversaw a workforce of both military and civilian personnel of approximately 125,000; his Oak Ridge office became the center of the wartime atomic energy’s activities.”
E.T. Cheng, R.J. Cerbone, Y.-K.M. Peng, J.D. Galambos, D. Strickler, I.N. Sviatoslavsky, C.P.C. Wong, D.K. Sze, X.R. Wang, M. Simnad, M. Tillack
Fusion Science and Technology | Volume 34 | Number 3 | November 1998 | Pages 1066-1070
Nuclear Testing and Design (Poster Session) | doi.org/10.13182/FST98-A11963755
Articles are hosted by Taylor and Francis Online.
Progress is given on the investigation of a low cost, scientifically attractive, and technologically feasible volumetric neutron source (VNS) based on the spherical torus (ST) concept. The ST-VNS has a major radius of 1.07 m, an aspect ratio of 1.4, and a plasma elongation 3. It can produce a neutron wall loading ultimately up to 5 MW/m2 averaged over the outboard test section when the fusion power reaches 380 MW. Initial operation of this device can be at a level of 1 MW/m2 or lower. Higher performance blanket components can be developed to raised the neutron wall loading. Using staged high wall loading operation scheme and optimistic availability projected for the VNS device, a neutron fluence of more than 30 MW-y/m2 can be expected to accumulate within 20 years of operation. Assessments of lifetime and reliability of fusion core components will thus be allowed in a power reactor relevant environment. A full-function testing of fusion core components may also become possible because of the high neutron wall loading capability. Integrated testing of tritium breeding in such a full scale power reactor relevant VNS device can be very useful to verify the self-sufficiency of fuel cycle in candidate power blanket concepts.